Ozone Concentration Mapping Using Geostatistical Methods in California

Aim of the Study

* To estimate ozone concentration levels at unmonitored locations across California.

* To create continuous prediction surfaces using geostatistical interpolation methods.

* To compare the performance of Kriging and Inverse Distance Weighted (IDW) techniques.

Input Data

* Ozone Concentration (measured on September 6, 2007, between 3:00 and 4:00 p.m.) - Vector (Point)
» City Centers - Vector (Point)

» California State Border - Vector (Polygon)

» Hillshade - Raster
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Methodology Overview

1. Exploratory Data Analysis (Statistics and Histogram)
2. Geostatistical Analyst Tools

- Ordinary Kriging

- Inverse Distance Weighted (IDW)
3. Semivariogram Modeling (for Kriging)

4. Prediction Surface Generation

5. Cross-Validation for Model Performance Assessment

[Insert infographic comparing Kriging and IDW methods]

25

20

Count

]

0,021 0,029 0,036

0,044

0,052

Distribution of OZONE

0,059 0,067 0,075 0,083 0,09
O 7ONE

0,008

0,106

0,113

0,121

Mean : 0,05897

Statistics

v'|Mean
Median
Std. Dev.
Rows
Count
Nulls
Min
Max
Sum
Skewness

Kurtosis

As an initial check, if the mean and median values are close, it suggests the data might follow a normal

distribution.

However, the ozone data histogram shows that the distribution is unimodal (a single peak) and right-skewed.

The extended right tail indicates the presence of a few sample points with high ozone concentration values. This
suggests that the data does not closely follow a normal distribution.




Geostatistical Wizard - Kriging - Semivariogram/Covariance Modeling o x
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Spatial correlation in ozone concentrations exists up to 184 km. Low nugget indicates minimal measurement
error. The Stable semi variogram model fits the data well, capturing the underlying spatial structure. No
anisotropy was considered in this model, assuming uniform spatial behavior across directions.



Kriging Results

* A semivariogram model was fitted to capture the spatial relationships between the measured points.
* The prediction surface was generated using Ordinary Kriging.
* Cross-validation was performed to evaluate prediction accuracy.

fatistical Wizard - Kriging - Searching Neighborhood

e The predicted value at an unmeasured location is generally most similar to the values of nearby
measured points.

e In the diagram, the red points contribute more weight to the prediction than the green points, because
they are closer to the location being estimated.

e By applying the semivariogram/covariance model developed earlier, along with the surrounding data
points, it is possible to predict the value at the unknown location.

Summary Table

Count 167

Mean 0.000396454268027538
Root-Mean-Square 0.00862302755801119
Mean Standardized 0.0167857622534953
Root-Mean-5quare Standardized 1.06511274997349
Average Standard Error 0.00860248117409058

The cross-validation results indicate that the Kriging model performs well:

e The Mean error is very close to zero, suggesting no bias in predictions.

« The Root Mean Square Error (RMSE) reflects the average prediction error, and its alignment with the
Average Standard Error shows that the model estimates its uncertainty accurately.

e The Standardized RMSE (1.065) being close to 1 indicates that the prediction errors are consistent with
the estimated standard errors.

Overall, these metrics suggest that the model provides reliable and unbiased predictions.
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IDW Results

» IDW interpolation was applied, assuming that closer points have a stronger influence.
* A prediction surface was generated for ozone concentration.
» Cross-validation results were obtained for comparison.
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Kriging is the more reliable interpolation method for this dataset, offering both higher accuracy and uncertainty
quantification, which are crucial for environmental analyses like ozone concentration mapping.



Comparison of Methods

* The performance of Kriging and IDW methods were compared using cross-validation results.
* Kriging demonstrated better accuracy in capturing local variations compared to IDW.

According to city location determined ozone values compared.
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Conclusions & Evaluation

In this study, two different spatial interpolation techniques were applied to predict ozone concentration levels at
unmeasured locations: Ordinary Kriging and Inverse Distance Weighted (IDW). While both methods aim to
estimate values based on known sample points, they differ significantly in their underlying assumptions and
modeling approaches.

Kriging is a geostatistical method that models the spatial autocorrelation among data points using a semi
variogram. This model captures the degree of similarity between nearby points and adjusts the weights
accordingly. Kriging not only provides predictions but also estimates the uncertainty (standard error) associated
with these predictions, making it a more robust approach when spatial patterns and dependencies are present.

In contrast, IDW is a deterministic method that relies solely on the distance between sample points and
prediction locations. It assumes that points closer to the prediction location have more influence than those farther
away, without considering any spatial structure or trends in the data. IDW does not provide any measure of
uncertainty, which can be a limitation for certain applications.

The cross-validation results indicate that Kriging outperforms IDW in terms of prediction accuracy for this
dataset. Kriging's ability to incorporate spatial relationships allowed it to capture local variations more effectively,
which is especially important for environmental phenomena like ozone concentration. In contrast, IDW showed
higher error rates and struggled to represent local fluctuations.

Overall, Kriging is recommended for datasets with evident spatial autocorrelation, while IDW may be suitable
for simpler applications where spatial structure is minimal or unknown.



